000 | 01980cam a2200397 i 4500 | ||
---|---|---|---|
001 | 22074459 | ||
003 | OSt | ||
005 | 20240824114247.0 | ||
008 | 210607s2022 flua b 001 0 eng | ||
010 | _a 2021027713 | ||
020 |
_a9780367626488 _q(hardback) |
||
020 |
_a9780367622565 _q(paperback) |
||
020 |
_z9781003110101 _q(ebook) |
||
040 |
_aLBSOR/DLC _beng _erda _cRLKU _dDLC |
||
042 | _apcc | ||
050 | 0 | 0 |
_aQA76.585 _b.K85 2022 |
082 | 0 | 0 |
_a004.67/82 _223 |
100 | 1 |
_aKumar, Jitendra, _d1975- _eauthor. _9626 |
|
245 | 1 | 0 |
_aMachine learning for cloud management / _cJitendra Kumar, Ashutosh Kumar Singh, Anand Mohan, Rajkumar Buyya. |
250 | _aFirst edition. | ||
264 | 1 |
_aBoca Raton : _bCRC Press/Taylor & Francis Group, _c2022. |
|
300 |
_axxiv, 172 pages : _billustrations ; _c27 cm |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_aunmediated _bn _2rdamedia |
||
338 |
_avolume _bnc _2rdacarrier |
||
504 | _aIncludes bibliographical references (pages 159-170) and index. | ||
520 |
_a"Machine Learning for Cloud Management explores cloud resource management through predictive modelling and virtual machine placement. The predictive approaches are developed using regression-based time series analysis and neural network models. The neural network-based models are primarily trained using evolutionary algorithms, and efficient virtual machine placement schemes are developed using multi-objective genetic algorithms. The book is ideal for researchers who are working in the domain of cloud computing"-- _cProvided by publisher. |
||
650 | 0 |
_aCloud computing. _9627 |
|
650 | 0 |
_aMachine learning. _9521 |
|
700 | 1 |
_aSingh, Ashutosh Kumar, _eauthor. _9628 |
|
700 | 1 |
_aMohan, Anand _c(Of Indian Institute of Technology), _eauthor. _9629 |
|
700 | 1 |
_aBuyya, Rajkumar, _d1970- _eauthor. _9630 |
|
906 |
_a7 _bcbc _corignew _d1 _eecip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK _n0 |
||
999 |
_c18094 _d18094 |